Scientists design technology to make PLA production process simpler

By Jenny Eagle

- Last updated on GMT

Picture credit: sandb.com - Zeolites are porous minerals
Picture credit: sandb.com - Zeolites are porous minerals

Related tags Polylactic acid Chemical industry

Polylactic acid (PLA) is already a part of our everyday lives in biodegradable drinking cups and vegetable wrapping foil but it is not yet considered a full alternative to traditional petroleum-based plastics, because it costs so much to produce.

As a result, researchers from the KU Leuven Centre for Surface Chemistry and Catalysis have come up with a way to make the PLA production process more simple and waste-free.

Fermentation turns the sugar into lactic acid

The bioplastic PLA is derived from renewable resources, including the sugar in maize and sugarcane. Fermentation turns the sugar into lactic acid, which in turn is a building block for polylactic acid.

According to co-author Professor Bert Sels of ‘Shape-selective zeolite catalysis for bioplastics production’ the production process for PLA is expensive because of the intermediary steps.

"First, lactic acid is fed into a reactor and converted into a type of pre-plastic under high temperature and in a vacuum​," he said.

"This is an expensive process. The pre-plastic - a low-quality plastic - is then broken down into building blocks for PLA​.

In other words, you are first producing an inferior plastic before you end up with a high-quality plastic. And even though PLA is considered a green plastic, the various intermediary steps in the production process still require metals and produce waste​."

The KU Leuven researchers developed a new technique by applying a petrochemical concept to biomass.

Zeolite as a catalyst

"We speed up and guide the chemical process in the reactor with a zeolite as a catalyst​,” added Co-author and postdoctoral researcher Michiel Dusselier.

Zeolites are porous minerals. By selecting a specific type on the basis of its pore shape, we were able to convert lactic acid directly into the building blocks for PLA without making the larger by-products that do not fit into the zeolite pores​.

Our new method has several advantages compared to the traditional technique: we produce more PLA with less waste and without using metals. In addition, the production process is cheaper, because we can skip a step.​"

Professor Sels is confident the technology will soon take hold.

"The KU Leuven patent on our discovery was recently sold to a chemical company that intends to apply the production process on an industrial scale​,” he said.

“PLA will never fully replace petroleum-based plastics. For one thing, some objects, such as toilet drain pipes, are not meant to be biodegradable. And it is not our intention to promote disposable plastic.

But products made of PLA can now become cheaper and greener. Our method is a great example of how the chemical industry and biotechnology can join forces​."

Professor Sels, is of KU Leuven Faculty of Bioscience Engineering (Centre for Surface Chemistry and Catalysis), and Dr Dusselier, KU Leuven Faculty of Bioscience Engineering (Centre for Surface Chemistry and Catalysis) and California Institute of Technology,  

Source:​ Science

Title:​ "Shape-selective zeolite catalysis for bioplastics production"

Author(s):​ Michiel Dusselier, Pieter Van Woude, Annelies Dewaele, Pierre Jacobs, and Berts Sels .

Published:​ July 3, 2015:

DOI:​ 10.1126/science.aaa7169.

Related topics Processing & Packaging

Related news

Follow us

Products

View more

Webinars