Partnership to develop bioplastic food packaging technology

By Jenni Spinner

- Last updated on GMT

Related tags Carbon dioxide Polylactic acid

NatureWorks and Calysta Energy are partnering on technology that uses methane to produce bioplastic building blocks.
NatureWorks and Calysta Energy are partnering on technology that uses methane to produce bioplastic building blocks.
Bio-materials developer NatureWorks LLC and Calysta Energy are partnering to research and develop a commercially viable method for fermenting methane into the building block for bioplastic packaging feedstock.

The project is focusing on transforming methane into lactic acid, which serves as the foundation for NatureWorks Ingeo, lactide intermediates and polymers made from renewable materials. If successful, the collaboration could significantly lower the cost to make Ingeo and broaden the scope of packaging products for food products, beverages, household items and other goods.

Sustainability benefits

Steve Davies, director of corporate communications and public affairs for NatureWorks LLC, told FoodProductionDaily.com that the collaboration could provide ecological benefits in a number of ways. First, it decreases the current reliance of bioplastic production on agricultural feedstocks; it also simplifies the process of converting carbon into packaging and other useful products. Further, it diverts harmful greenhouse gases from wastewater treatment, landfills, natural gas and other sources into a useful process, rather than polluting the atmosphere.

Currently, NatureWorks Ingeo relies on carbon from carbon dioxide feedstock that has been fixed or sequestered through photosynthesis into simple plant sugars, known as first-generation materials.” The company’s facility in Nebraska uses corn starch; a planned facility in Asia uses cane sugar.

Proper partner

Davies said the company, looking to help increase the viability and efficiency of bioplastic packaging material production, sought out a partner that could make it happen; Calysta fit the bill.

We’re intrigued by the promise of what their technology offers​,” he said. “For their part, Calysta’s strategy is to commercialize that technology through licensing and partnerships with established materials producers such as NatureWorks. The R&D collaboration which just resulted is a good fit for both of us​.”

In addition to the Calysta Energy collaboration, NatureWorks also is pursuing second-generation sources for the carbon used in making bioplastic material. Instead, the company is seeking to harness sources such as a byproduct of sugar-cane processing.

We don’t see there being a simple, one-size-fits all,  ‘best’ feedstock for bioplastics​,” Davies said. “It’s going to depend on where we’re producing and what the locally abundant resources are in that location.  We see methane as a complimentary feedstock to those that we already have in use and in our planning (first- and second- generation plant sugars)​.”

Path to commercialization

Davies reported that Calysta is working on development of its BioGTC (biological gas-to-chemicals) platform for converting methane to high-value chemicals. He estimated that in a best-case scenario, the companies might expect to see the first pilot samples in about five years.

We recognize, though, that the joint development of true, new-to-the-world technologies like this is inherently complex​,” he said.

Related topics Processing & Packaging

Related news

Show more

Follow us

Products

View more

Webinars